Combinatorics related to the Michael space problem

Arturo Martínez-Celis

Centro de Ciencias Matemáticas, UNAM Hejnice, 2016

Arturo Martínez-Celis

UNAM

An ultrafilter \mathcal{U} is a *Michael Ultrafilter* if for every compact set $K \subseteq \omega^{\omega}$ if $\mathfrak{d}_{\mathcal{U}}(K) > \omega$, then $\mathfrak{d}_{\mathcal{U}}(K) \ge \mathfrak{d}_{\mathcal{U}}$.

A topological space X is Lindelöf if every open cover has an countable open subcover.

E. Michael, 195X

Is there a Lindelöf space X such that $X \times \omega^{\omega}$ is not Lindelöf?

Such spaces are called *Michael spaces*.

Examples of Michael Spaces: Under CH ($\mathfrak{b} = \omega_1$) there is one (E. Michael). Under $\mathfrak{d} = \operatorname{cov}(\mathcal{M})^*$ there is one (J. Moore).

Theorem (Moore)

 $(0 < \aleph_{\omega})$. There is a Michael space if and only if there exists is a sequence $\{X_{\alpha} : \alpha \in \kappa\}$ with $\mathfrak{b} \leq \kappa \leq \mathfrak{d}$ such that

•
$$(X_{\alpha})_{\alpha \leq \kappa}$$
 is \subsetneq -increasing and $X_{\kappa} = \omega^{\omega}$

For each compact set $K \subseteq \omega^{\omega}$, the least ordinal α_K such that $K \subseteq X_{\alpha_K}$ has at most countable cofinality.

 $\operatorname{cov}(\mathcal{M})$ is the smallest number of meager sets whose union covers the real line.

A Michael sequence

Example: Suppose $\mathfrak{b} = \omega_1$ and let $\{f_\alpha : \alpha \in \omega_1\}$ be an unbounded family. If $X_\alpha = \{f \in \omega^\omega : f \ngeq f_\gamma \text{ for } \gamma < \alpha\}$, then $\{X_\alpha : \alpha \le \omega_1\}$ is a Michael sequence.

Another Michael sequence

Example: Suppose $\mathfrak{d} = \operatorname{cov}(\mathcal{M})$ and let $\{f_{\alpha} : \alpha \in \mathfrak{d}\}$ be a dominating family. If $X_{\alpha} = \{f \in \omega^{\omega} : f \leq f_{\gamma} \text{ for } \gamma < \alpha\}$, then $\{X_{\alpha} : \alpha \leq \mathfrak{d}\}$ is a Michael sequence.

Let \mathcal{U} be an ultrafilter over ω . If $f, g \in \omega^{\omega}$, then $f \leq_{\mathcal{U}} g$ if $\{n \in \omega : g(n) \geq f(n)\} \in \mathcal{U}$.

 $\leq_{\mathcal{U}}$ is a total order for ω^{ω} , therefore being $\leq_{\mathcal{U}}$ -unbounded is the same thing as being $\leq_{\mathcal{U}}$ -dominating.

$$\mathfrak{d}_{\mathcal{U}} = \operatorname{cof}(\omega^{\omega}/\mathcal{U}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \omega^{\omega} \text{ is } \leq_{\mathcal{U}} \operatorname{-dominating}\}.$$

$$\mathfrak{b} \leq \mathfrak{d}_\mathcal{U} \leq \mathfrak{d}$$

Arturo Martínez-Celis

Cardinal Invariants

$$\mathfrak{b} = \min\{|\mathbf{A}| : \mathbf{A} \subseteq \omega^{\omega} \text{ is } < \text{-unbounded}\}.$$

 $\mathfrak{b}^* = \min\{|A| : A \subseteq \omega^{\omega} \text{ is } < \text{-unbounded everywhere}\}.$

 $\mathfrak{d} = \min\{|A| : A \subseteq \omega^{\omega} \text{ is } \leq \text{-dominating}\}.$

Arturo Martínez-Celis

Internal Cardinal Invariants: If $K \subseteq \omega^{\omega}$

 $\mathfrak{b}(K) = \min\{|A| : A \subseteq K \text{ is } < |_{K}\text{-unbounded}\}.$

 $\mathfrak{b}^*(\mathcal{K}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \omega^{\omega} \text{ is } < |_{\mathcal{K}} \text{-unbounded everywhere}\}.$

 $\mathfrak{d}(K) = \min\{|A| : A \subseteq \omega^{\omega} \text{ is } \leq |_{\mathcal{K}} \text{-dominating}\}.$

Arturo Martínez-Celis

UNAM

An ultrafilter \mathcal{U} is a *Michael Ultrafilter* if for every compact set $K \subseteq \omega^{\omega}$ if $\mathfrak{d}_{\mathcal{U}}(K) > \omega$, then $\mathfrak{d}_{\mathcal{U}}(K) \ge \mathfrak{d}_{\mathcal{U}}$.

Theorem

If \mathcal{U} is an ultrafilter with $\mathfrak{d}_{\mathcal{U}} = \omega_1$ then \mathcal{U} is Michael. In particular, under $\mathfrak{d} = \omega_1$, every ultrafilter is a Michael ultrafilter.

Theorem

If $cov(\mathcal{M}) = \mathfrak{c}$, then there are Michael ultrafilters.

Arturo Martínez-Celis

Are there ultrafilter properties that imply the existence of a Michael ultrafilter?

Theorem

On Miller's Model, every P-point is not a Michael ultrafilter

The distributive number \mathfrak{h} is the smallest number of dense open families of subsets of $[\omega]^{\omega}$ with empty intersection.

Theorem

If $\mathfrak{t} = \mathfrak{h}$, then $P(\omega)/\mathsf{FIN} \Vdash "\mathcal{U}_{gen}$ is a Michael ultrafilter"

Theorem

For every compact set K, $P(\omega)/\text{FIN} \Vdash "\mathfrak{d}_{\dot{\mathcal{U}}_{gen}}(K) = \min_{U \in \dot{\mathcal{U}}_{gen}} \mathfrak{b}^*(K|_U)"$

Arturo Martínez-Celis

Theorem (Hrúšak, Rojas, Zapletal)

There is an F_{σ} ideal I such that $cof(I) = \omega_1$ in the Mathias, Laver and Miller model.

Using this ideal, it is possible to cook (inside those models) a compact set such that $\mathfrak{b}^*(\mathcal{K}|_{\mathcal{A}}) = \omega_1$.

Theorem

Being a Ramsey Ultrafilter does not neccesarily imply that the ultrafilter is Michael.

Model	Michael Space	Michael Ultrafilter	After $P(\omega)/FIN$
Cohen	Yes	Yes	Yes
Random	Yes	Yes	Yes
Sacks	Yes	Yes	Yes
Miller	Yes	?	Yes
Mathias	?	?	?
Laver	?	?	?

Thanks for your attention!!!1

Arturo Martínez-Celis